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Artificial production of human speech is known as speech synthesis. This machine
learning-based technique is applicable in text-to-speech, music generation, speech

generation, speech-enabled devices, navigation systems, and accessibility for visually-
impaired people.
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In this article, we’ll look at research and model architectures that have been written and

developed to do just that using deep learning.

But before we jump in, there are a couple of specific, traditional strategies for speech

synthesis that we need to briefly outline: concatenative and parametric.

In the concatenative approach, speeches from a large database are used to generate
new, audible speech. In a case where a different style of speech is needed, a new

database of audio voices is used. This limits the scalability of this approach.

The parametric approach uses a recorded human voice and a function with a set of

parameters that can be modified to change the voice.

These two approaches represent the old way of doing speech synthesis. Now let’s look
at the new ways of doing it using deep learning. Here’s the research we’ll cover in order

to examine popular and current approaches to speech synthesis:

o WaveNet: A Generative Model for Raw Audio

e Tacotron: Towards End-toEnd Speech Synthesis

e Deep Voice 1: Real-time Neural Text-to-Speech

e Deep Voice 2: Multi-Speaker Neural Text-to-Speech

e Deep Voice 3: Scaling Text-to-speech With Convolutional Sequence Learning
o Parallel WaveNet: Fast High-Fidelity Speech Synthesis

e Neural Voice Cloning with a Few Samples

¢ VoiceLoop: Voice Fitting and Synthesis via A Phonological Loop

e Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions

WaveNet: A Generative Model for Raw Audio

The authors of this paper are from Google. They present a neural network for
generating raw audio waves. Their model is fully probabilistic and autoregressive, and

it generates state-of-the-art text-to-speech results for both English and Mandarin.
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WaveNet: A Generative Model for Raw Audio

This paper introduces WaveNet, a deep neural network for generating raw

audio waveforms. The model is fully...

arxiv.org
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WaveNet is an audio generative model based on the PixelCNN. It’s capable of producing

audio that’s very similar to a human voice.
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Figure 4: Overview of the residual block and the entire architecture.
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Google Wavenet | Google I/0 2018
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In this generative model, each audio sample is conditioned on the previous audio
sample. The conditional probability is modeled by a stack of convolutional layers. This
network doesn’t have pooling layers, and the output of the model has the same time

dimensionality as the input.
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Figure 2: Visualization of a stack of causal convolutional layers.
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The use of casual convolutions in the architecture ensures that the model doesn’t
violate the ordering of how the data is modeled. In this model, each predicted voice
sample is fed back to the network to aid in predicting the next one. Since casual

convolutions don’t have a recurrent connection, they’re faster to train than RNNs.

One of the major challenges of using casual convolutions is that they require many

layers in order to increase the receptive field. To solve this challenge, the authors use
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dilated convolutions. Dilated convolutions enable networks to have a large receptive
field but with a few layers. Modeling the conditional distributions over the individual

audio samples is done using a softmax distribution.
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Figure 3: Visualization of a stack of dilated causal convolutional layers.
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The model is evaluated on multispeaker speech generation, text-to-speech, and music
audio modeling. The MOS (Mean Opinion Score) is used for this testing. [t measures
the quality of voice. It’s basically the opinion of a person about the voice quality. It is a

number between one and five, with five being the best quality.

| Subjective 5-scale MOS in naturalness

Speech samples | North American English Mandarin Chinese
LSTM-RNN parametric 3.67 £0.098 3.79 £ 0.084
HMM-driven concatenative 3.86 £0.137 3.47 £0.108
WaveNet (L+F) 4.21 + 0.081 4.08 + 0.085
Natural (8-bit p-law) 4.46 + 0.067 4.25 +0.082
Natural (16-bit linear PCM) 4.55 +0.075 4.21 £0.071

Table 1: Subjective 5-scale mean opinion scores of speech samples from LSTM-RNN-based sta-
tistical parametric, HMM-driven unit selection concatenative, and proposed WaveNet-based speech
synthesizers, 8-bit p-law encoded natural speech, and 16-bit linear pulse-code modulation (PCM)
natural speech. WaveNet improved the previous state of the art significantly, reducing the gap be-
tween natural speech and best previous model by more than 50%.
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The figure below shows the quality of waveNets on a scale of 1-5.

US English Mandarin Chinese
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The latest in deep learning — from a source you can
trust. Sign up for a weekly dive into all things deep
learning, curated by experts working in the field.

Tacotron: Towards End-toEnd Speech Synthesis

The authors of this paper are from Google. Tacotron is an end-to-end generative text-to-
speech model that synthesizes speech directly from text and audio pairs. Tacotron
achieves a 3.82 mean opinion score on US English. Tacotron generates speech at frame-

level and is, therefore, faster than sample-level autoregressive methods.

Tacotron: Towards End-to-End Speech Synthesis

A text-to-speech synthesis system typically consists of multiple stages,
such as a text analysis frontend, an acoustic...
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The model is trained on audio and text pairs, which makes it very adaptable to new
datasets. Tacotron has a seq2seq model that includes an encoder, an attention-based

decoder, and a post-processing net. As seen in the architecture diagram below, the
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model takes characters as input and outputs a raw spectrogram. This spectrogram is

then converted to waveforms.
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Figure 1: Model architecture. The model takes characters as input and outputs the corresponding

raw spectrogram, which is then fed to the Griffin-Lim reconstruction algorithm to synthesize speech.
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The figure below shows what the CBHG module looks like. It consists of 1-D
convolution filters, highway networks, and a bidirectional GRU (Gated Recurrent Unit).
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Figure 2: The CBHG (1-D convolution bank 4 highway network + bidirectional GEU) module
adapted from Lee et al. (2016).
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A character sequence is fed to the encoder, which extracts sequential representations of
text. Each character is represented as a one-hot vector and embedded into a continuous
vector. Non-linear transformations are then added, followed by a dropout layer to

reduce overfitting. This, in essence, reduces the mispronunciation of words.

The decode used is a tanh content-based attention decoder. The waveforms are then
generated using the Griffin-Lim algorithm. The hyper-parameters used for this model

are shown below.

Table 1: Hyper-parameters and network architectures. “conv-k-c-ReLU” denotes 1-D convolution

with width £ and ¢ output channels with ReLU activation. FC stands for fully-connected.
Spectral analysis pre-emphasis: 0.97; frame length: 50 ms;

frame shift: 12.5 ms; window type: Hann

Character embedding | 256-D

Encoder CBHG ConviD bank: K=16, conv-k-128-RelLU

Max pooling: stride=1, width=2

ConviD projections: conv-3-128-ReLLU

— conv-3-128-Linear

Highway net: 4 layers of FC-128-ReLLU

Bidirectional GRU: 128 cells

Encoder pre-net FC-256-ReLLU — Dropout(0.5) —

FC-128-ReL.U — Dropout(0.5)
Decoder pre-net FC-256-ReLU — Dropout(0.5)—

FC-128-ReLLU — Dropout(0.5)
Decoder RNN 2-layer residual GRU (256 cells)
Attention RNN 1-layer GRU (256 cells)
Post-processing net ConvlD bank: K=8, conv-k-128-ReL.U
CBHG Max pooling: stride=1, width=2

ConvlD projections: conv-3-256-Rel.U
— conv-3-80-Linear

Highway net: 4 layers of FC-128-RelLU
Bidirectional GRU: 128 cells
Reduction factor () | 2
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The figure below shows the performance of Tacotron compared to other alternatives.

Table 2: 5-scale mean opinion score evaluation.
mean opinion score
Tacotron 3.82 + 0.085
Parametric 3.69 + 0.109
Concatenative 4.09 £0.119

source
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Deep Voice 1: Real-time Neural Text-to-Speech

The authors of this paper are from Baidu’s Silicon Valley Artificial Intelligence Lab.

Deep Voice is a text-to-speech system developed using deep neural networks.

Deep Voice: Real-time Neural Text-to-Speech

We present Deep Voice, a production-quality text-to-speech system
constructed entirely from deep neural networks. Deep...

arxiv.org

It has five major building blocks:

¢ A segmentation model for locating phoneme boundaries with deep neural networks

using connectionist temporal classification (CTC) loss.

e A grapheme-to-phoneme conversion model (grapheme-to-phoneme is the process

of using rules to generate a word’s pronunciation).
¢ A phoneme duration prediction model.
¢ A fundamental frequency prediction model.

¢ An audio synthesis model using a variant of WaveNet that uses fewer parameters.
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Figure 1. System diagram depicting (a) training procedure and (b) inference procedure, with inputs on the left and outputs on the right.
In our system, the duration prediction model and the FO prediction model are performed by a single neural network trained with a joint
loss. The grapheme-to-phoneme model is used as a fallback for words that are not present in a phoneme dictionary, such as CMUDict.
Dotted lines denote non-learned components.


https://arxiv.org/abs/1702.07825?source=post_page-----630afcafb9dd----------------------
https://en.wikipedia.org/wiki/Phoneme
https://en.wikipedia.org/wiki/Connectionist_temporal_classification

source

The grapheme-to-phoneme model converts English characters to phonemes. The
segmentation model identifies where each phoneme begins and ends in an audio file.
The phoneme duration model predicts the duration of every phoneme in a phoneme

sequence.

The fundamental frequency model predicts whether a phoneme is voiced. The audio
synthesis model synthesizes audio by combining the output of the grapheme-to-

phoneme, phoneme duration, and fundamental frequency prediction models.

Here’s how this model fares compared to other models.

Deep Voice: Real-time Neural TTS

Type Model Size MOS=CI

Ground Truth (48 kHz) None 4.75+£0.12
Ground Truth None 445+ 0.16
Ground Truth (companded and expanded) None 4.34 £ 0.18
Synthesized £ =40,7r =64,5 =256 | 3.94+0.26
Synthesized (48 kHz) (=40,r =064, =256 | 3.84+0.24
Synthesized (Synthesized FO0) f=40,r =64, =256 | 2.76 +£0.31
Synthesized (Synthesized Duration and FO) | £ = 40,r = 64,5 = 256 | 2.00 £0.23
Synthesized (2X real-time inference) £=20,r=32,s =128 | 2.74 + (.32
Synthesized (1X real-time inference) £=20,r=064,5s=128 | 3.3 +0.31

Table 1. Mean Opinion Scores (MOS) and 95% confidence intervals (ClIs) for utterances. This MOS score is a relative MOS score
obtained by showing raters the same utterance across all the model types (which encourages comparative rating and allows the raters
to distinguish finer grained differences). Every batch of samples also includes the ground truth 48 kHz recording, which makes all our
ratings comparative to natural human voices. 474 ratings were collected for every sample. Unless otherwise mentioned, models used
phoneme durations and FO extracted from the ground truth, rather than synthesized by the duration prediction and frequency prediction
models, as well as a 16384 Hz audio sampling rate.

Deep Voice 2: Multi-Speaker Neural Text-to-Speech

This paper represents the second iteration of Deep Voice by Baidu Silicon Valley
Artificial Intelligence Lab. They introduce a method for augmenting neural text-to-
speech with low dimensional trainable speaker embeddings to produce various voices

from a single model.

The model is based on a similar pipeline as DeepVoice 1. However, it represents a
significant improvement in audio quality. The model is able to learn hundreds of unique

voices from less than half an hour of data per speaker.

Deep Voice 2: Multi-Speaker Neural Text-to-Speech

We introduce a technique for augmenting neural text-to-speech (TTS) with
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low dimensional trainable speaker embeddings to...
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The authors also introduce a WaveNet-based spectrogram-to-audio neural vocoder,
which is then used with Tacotron in place of Griffin-Lim audio generation. The main
focus of this paper is to handle multiple speakers with fewer data from each speaker.
The general architecture is similar to Deep Voice 1. The training process of Deep Voice 2

is depicted in the figure below.
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Figure 5: System diagram for training procedure for Deep Voice 2.
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The major difference between Deep Voice 2 and Deep Voice 1 is the separation of the
phoneme duration and frequency models. Deep Voice 1 has a single model for jointly
predicting the phoneme duration and frequency profile; in Deep Voice 2, the phoneme

durations are predicted first and then they are used as inputs to the frequency model.

The segmentation model in Deep Voice 2 is a convolutional-recurrent architecture with
connectionist temporal classification (CTC) loss applied to classify phoneme pairs. The
major modification in Deep Voice 2 is the addition of batch normalization and residual
connections in the convolutional layers. Its vocal model is based on a WaveNet
architecture.

Synthesizing speech from multiple speakers is done by augmenting each model with a
single low-dimensional level speaker embedding vector per speaker. Weight sharing
between speakers is achieved by storing speaker-dependent parameters in a very low-

dimensional vector.

The initial states of the recurrent neural network (RNN) are produced using speaker

embeddings. A uniform distribution is used to randomly initialize the speaker
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embeddings and trained jointly using backpropagation. Speaker embeddings are

incorporated in multiple portions of the model in order to ensure that each speaker's

unique voice signature is factored in.
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Figure 2: Architecture for the multi-speaker (a) segmentation, (b) duration, and (c) frequency model.
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Let’s now see how this model performs in comparison to other models.

| Dataset || Multi-Speaker Model | Samp. Freq. | MOS | Acc. |
VCTK Deep Voice 2 (20-layer WaveNet) 16 KHz 2.87=0.13 | 99.9%
VCTK Deep Voice 2 (40-layer WaveNet) 16 KHz 3.21=0.13 | 100 %
VCTK Deep Voice 2 (60-layer WaveNet) 16 KHz 3421012 | 99.7%
VCTK Deep Voice 2 (80-layer WaveNet) 16 KHz 3.53=0.12 | 99.9%
VCTK Tacotron (Griffin-Lim) 24 KHz 1.68£0.12 | 99.4%
VCTK Tacotron (20-layer WaveNet) 24 KHz 25110013 | 60.9%
VCTK Ground Truth Data 48 KHz 4.65+£0.06 | 99.7%
Audiobooks || Deep Voice 2 (80-layer WaveNet) 16 KHz 297+0.17 | 97.4%
Audiobooks Tacotron (Griffin-Lim) 24 KHz 1.73£0.22 | 93.9%
Audiobooks Tacotron (20-layer WaveNet) 24 KHz 2.11£0.20 | 66.5%
Audiobooks Ground Truth Data 44.1 KHz 4.63+£0.04 | 98.8%

Table 2: MOS and classification accuracy for all multi-speaker models. To obtain MOS, we use
crowdMOS toolkit as detailed in Table 1. We also present classification accuracies of the speaker
discriminative models (see Appendix E for details) on the samples, showing that the synthesized

voices are as distinguishable as ground truth audio.
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Figure 4: Principal components of the learned speaker embeddings for the (a) 80-layer vocal model
and (b) character-to-spectrogram model for VCTK dataset. See Appendix D.3 for details.
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| Model | Samp. Freq. [ MOS |

Deep Voice | 16 KHz 2.05+£0.24
Deep Voice 2 16 KHz 2.96 £0.38
Tacotron (Griffin-Lim) 24 KHz 2.57 +0.28
Tacotron (WaveNet) 24 KHz 4.17+£0.18

Table 1: Mean Opinion Score (MOS) evaluations with 95% confidence intervals of Deep Voice 1,
Deep Voice 2, and Tacotron. Using the crowdMOS toolkit, batches of samples from these models
were presented to raters on Mechanical Turk. Since batches contained samples from all models, the
experiment naturally induces a comparison between the models.
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Deep Voice 3: Scaling Text-to-speech With Convolutional
Sequence Learning

In the third iteration of Deep Voice, the authors introduce is a fully-convolutional

attention-based neural text-to-speech (TTS) system.

Deep Voice 3: Scaling Text-to-Speech with Convolutional
Sequence Learning

We present Deep Voice 3, a fully-convolutional attention-based neural text-
to-speech (TTS) system. Deep Voice 3 matches...

arxiv.org

The authors propose a fully-convolutional character-to-spectrogram architecture that
enables fully parallel computation. The architecture is an attention-based sequence-to-

sequence model. The model was trained on the LibriSpeech ASR dataset.

The proposed architecture is able to convert textual features such as characters,
phonemes, and stresses into different vocoder parameters. Some of these include mel-
band spectrograms, linear-scale log magnitude spectrograms, fundamental frequency,
spectral envelope, and aperiodicity parameters. These vocoder parameters are then

used as the input for the audio waveform synthesis model.
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Figure 1: Deep Voice 3 uses residual convolutional layers to encode text into per-timestep key and
value vectors for an attention-based decoder. The decoder uses these to predict the mel-scale log
magnitude spectrograms that correspond to the output audio. (Light blue dotted arrows depict the
autoregressive process during inference.) The hidden states of the decoder are then fed to a converter
network to predict the vocoder parameters for waveform synthesis. See Appendix A for more details.
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The architecture is composed of the following:

e Encoder — a fully-convolutional encoder that converts textual features to an

internal learned representation.

¢ Decoder — a fully-convolutional causal decoder that decodes the learned

representations in an autoregressive manner.

e Converter — a fully-convolutional post-processing network that predicts the final

vocoder parameters.

For text pre-processing, the authors' uppercase text input characters, remove
punctuation marks, end each utterance with a period or question mark, and replace

spaces with a special character that indicates the length of a pause.

The figure below is a comparison of the performance of this model with other

alternative models.

Model | Mean Opinion Score (MOS)
Deep Voice 3 (Griffin-Lim) 3.62 +0.31
Deep Voice 3 (WORLD) 3.63 £ 0.27
Deep Voice 3 (WaveNet) 3.78 £0.30
Tacotron (WaveNet) 3.78 £0.34
Deep Voice 2 (WaveNet) 2.74 +£0.35

Table 2: Mean Opinion Score (MOS) ratings with 95% confidence intervals using different wave-
form synthesis methods. We use the crowdMOS toolkit (Ribeiro et al., 2011); batches of samples
from these models were presented to raters on Mechanical Turk. Since batches contained samples
from all models, the experiment naturally induces a comparison between the models.

Model | MOS (VCTK) MOS (LibriSpeech)
Deep Voice 3 (Griffin-Lim) 3.01 +£0.29 2.37T+0.24
Deep Voice 3 (WORLD) 3.44 +0.32 2.89 +0.38
Deep Voice 2 (WaveNet) 3.69 4+ 0.23 -
Tacotron (Griffin-Lim) 2.07+0.31 -
Ground truth 4.69 +0.04 4.51 £0.18

Table 3: MOS ratings with 95% confidence intervals for audio clips from neural TTS systems on
multi-speaker datasets. We also use crowdMOS toolkit; batches of samples including ground truth
were nresented to human raters. Multi-sneaker Tacotron imnlementation and hvnernarameters are
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based on Arik et al. (2017), which is a proof-of-concept implementation. Deep Voice 2 and Tacotron
systems were not trained for the LibriSpeech dataset due to prohibitively long time required to
optimize hyperparameters.
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deep learning world.

Parallel WaveNet: Fast High-Fidelity Speech Synthesis

The authors of this paper are from Google. They introduce a method known as
Probability Density Distillation, which trains a parallel feed-forward network from a
trained WaveNet. The method has been built by marrying the best features of Inverse
autoregressive flows (IAFs) and WaveNet. These features represent the efficient

training of WaveNet and the efficient sampling of IAF networks.

Parallel WaveNet: Fast High-Fidelity Speech Synthesis

The recently-developed WaveNet architecture is the current state of the art
in realistic speech synthesis, consistently...

arxiv.org

For training, the authors use a trained WaveNet as a ‘teacher’, and the parallel WaveNet
‘student’ learns from this. The goal here is to have the student match the probability of

its own samples under the distribution learned from the teacher.
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Figure 2: Overview of Probability Density Distillation. A pre-trained WaveNet teacher is used to
score the samples & output by the student. The student is trained to minimise the KL-divergence
between its distribution and that of the teacher by maximising the log-likelihood of its samples under
the teacher and maximising its own entropy at the same time.
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The authors also propose additional loss functions for guiding the student in generating
high-quality audio streams:

e Power loss — to ensure that the power in different frequency bands of the speeches
is used, as in human speech.

e Perceptual loss — for this loss, the authors experimented with feature
reconstruction loss (the Euclidean distance between feature maps in the classifier)
and style loss (the Euclidean distance between the Gram matrices). They found that
style loss produced better results.

e Contrastive loss that penalizes waveforms that have high likelihood regardless of

the conditioning vector.

The figure below shows the performance of this model.

| Parametric | Concatenative | Distilled WaveNet

English speaker 1 (female - 65h data) 3.88 4.19 441
English speaker 2 (male - 21h data) 3.96 4.09 4.34
English speaker 3 (male - 10h data) 3.77 3.65 4.47
English speaker 4 (female - 9h data) 3.42 3.40 3.97
Japanese speaker (female - 28h data) 4.07 347 423

Table 2: Comparison of MOS scores on English and Japanese with multi-speaker distilled WaveNets.
Note that some speakers sounded less appealing to people and always get lower MOS, however
distilled parallel WaveNet always achieved significantly better results.
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Method | Subjective 5-scale MOS

16kHz, 8-bit z:-law, 25h data:

LSTM-RNN parametric [27] 3.67 £ 0.098
HMM-driven concatenative [27] 3.86 £0.137
WaveNet [27] 421+ 0.081
24kHz, 16-bit linear PCM, 65h data:

HMM-driven concatenative 4.19 + 0.097
Autoregressive WaveNet 4.41 £+ 0.069
Distilled WaveNet 441 +0.078

Table 1: Comparison of WaveNet distillation with the autoregressive teacher WaveNet, unit-selection
(concatenative), and previous results from [27]. MOS stands for Mean Opinion Score.
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Neural Voice Cloning with a Few Samples

The authors of this paper are from Baidu Research. They introduce a neural voice

cloning system that learns to synthesize a person’s voice from a few audio samples.

The two approaches used are speaker adaptation and speaker encoding. Speaker
adaptation works by fine-tuning a multi-speaker generative model, while speaker
encoding works by training a separate model to directly infer a new speaker embedding

that’s applied to the multi-speaker generative model.

Neural Voice Cloning with a Few Samples

Voice cloning is a highly desired feature for personalized speech interfaces.
Neural network based speech synthesis has...

arxiv.org

This paper uses Deep Voice 3 as the baseline for the multi-speaker model. For voice
cloning, the authors extract speaker characteristics from a speaker and generate audio

provided that text from a given speaker is available.

The performance metrics used for the generated audio are speech naturalness and
speaker similarity. They propose a speaker encoding method that directly estimates a

speaker's embeddings from the audio samples of an unseen speaker.

Speaker adaptation

Speaker encoding
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Figure 1: Illustration of speaker adaptation and speaker encoding approaches for voice cloning.
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Below is a look at how voice cloning performes.

| | Speaker adaptation | Speaker encoding |
Approaches Embedding-only | Whole-model | Without fine-tuning | With fine-tuning
Data Text and audio Audio
Cloning time ~8hours | ~0.5—5mins | ~1.5—35secs | ~ 1.5 — 3.5 secs
Inference time ~ (0.4 — 0.6 secs
Parameters per speaker 128 | ~ 25 million | 512 | 512

Table 1: Comparison of speaker adaptation and speaker encoding approaches.
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Figure 4: (a) Speaker classification accuracy with different numbers of cloning samples. (b) EER
(using 5 enrollment audios) for different numbers of cloning samples. LibriSpeech (unseen speakers)
and VCTK represent EERs estimated from random pairing of utterances from ground-truth datasets.
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VoiceLoop: Voice Fitting and Synthesis via A Phonological
Loop

The authors of this paper are from Facebook Al Research. They introduce a neural text-
to-speech (TTS) technique that can transform text into speech from voices that have

been sampled from the wild.

VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop

We present a new neural text to speech (TTS) method that is able to
transform text to speech in voices that are sampled...

arxiv.org

VoiceLoop is inspired by a working memory model known as a phonological loop,
which holds verbal information for a short time. It’s comprised of a phonological store
that’s constantly being replaced, and a rehearsal process that maintains longer-term

representations in the phonological store.

VoiceLoop constructs a phonological store by implementing a shifting buffer as a
matrix. Sentences are represented as a list of phonemes. A short vector is then decoded
from each of the phonemes. The current context vector is generated by weighing the

encoding of the phonemes and summing them at each time point.

Some of the properties that make VoiceLoop different include the use of a memory
buffer instead of the conventional RNNs, memory sharing between all processes, and

using shallow, fully-connected networks for all computations.
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[ No is the answer to your first question

Figure 1: An overview of the VoiceLoop architecture. The reader combines the encoding of the
sentence’s phonemes using the attention weights to create the current context. A new representation
is created by a shallow network that receives the context, the speaker ID, the previous output, and
the buffer. The new representation is inserted into the buffer and the earliest vector in the buffer is
discarded. The output is obtained by another shallow network that receives the buffer and the speaker
as inputs. Once trained, fitting a new voice is done by freezing the network, except for the speaker
embedding.
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Below is a look at how the model performs in comparison to other alternatives.

Table 2: Single Speaker MOS Scores (Mean £+ SD)

Method LJ Blizzard 2011  Blizzard 2013
Tacotron (re-impl) 2.06 £ 1.02  2.15 4+ 1.10 N/A
Char2wav 342+ 1.14 333 +£1.06 203 £ 1.16
VoiceLoop 3.69 = 1.04 338 = 1.00 3.40 = 1.03
Ground truth 4.60 £0.71 456 £ 0.67 4.80 = 0.50

Table 3: Single Speaker MCD Scores (Mean £ SD; lower is better)

Method LJ Blizzard 2011  Blizzard 2013
Tacotron (re-impl) 12.82 £ 1.41 14.60 £7.02 N/A
Char2wav 1941 £5.15 1397493 18.72 =641
VoiceLoop 1442 +£1.39 8.86 £ 1.22 8.67 £ 1.26

Table 4: Multi-speaker MOS scores (Mean + SE)
Method VCTK22 VCTKG65 VCTKS8S5 VCTK101
Char2wav ~ 2.84 £1.20 285+ 1.19 276 £ 1.19 2.66%+1.16

VoiceLoop 3.57+1.08 340+£100 3.13+1.17 333+£1.10
GT 461075 459+072 4.64=L£0.64 4.63+0.66
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Natural TTS Synthesis by Conditioning WaveNet on Mel
Spectrogram Predictions

The authors of this paper are from Google and the University of California, Berkeley.

They introduce Tacotron 2, a neural network architecture for speech synthesis from

text.

Natural TTS Synthesis by Conditioning WaveNet on Mel
Spectrogram Predictions

This paper describes Tacotron 2, a neural network architecture for speech
synthesis directly from text. The system is...

arxiv.org

It’s comprised of a recurrent sequence-to-sequence feature prediction network that
maps character embeddings to mel-scale spectrograms. This is then followed by a
WaveNet model that’s been modified. This model acts as a vocoder that synthesizes

time-domain waves from the spectrograms. The model achieves a mean opinion score
(MOS) of 4.53.
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Fig. 1. Block diagram of the Tacotron 2 system architecture.
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This model has been built by combining the best features of Tacotron and WaveNet.

Below is the performance of the model in comparison to alternative models.

System MOS

Parametric 3.492 + 0.096
Tacotron (Griffin-Lim) 4.001 £+ 0.087
Concatenative 4.166 £ 0.091
WaveNet (Linguistic) 4.341 £+ 0.051
Ground truth 4.582 £+ 0.053

Tacotron 2 (this paper) 4.526 4 0.066

Table 1. Mean Opinion Score (MOS) evaluations with 95% confi-
dence intervals computed from the t-distribution for various systems.
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Conclusion

We should now be up to speed on some of the most common — and a couple of very

recent — techniques for performing speech synthesis in a variety of contexts.

The papers/abstracts mentioned and linked to above also contain links to their code

implementations. We’d be happy to see the results you obtain after testing them.

Machine learning doesn’t have to live on servers or
in the cloud — it can also live on your smartphone.
And Fritz has the tools to easily teach mobile apps
to see, hear, sense, and think.

Editor’s Note: Join Heartbeat on Slack and follow us on Twitter and LinkedIn for all the

latest content, news, and more in machine learning, mobile development, and where the

two intersect.
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Thanks to Austin Kodra.
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